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ABSTRACT
The paper introduces a new approach to the analysis of

nonlinear circuits containing temperature-dependent devices
and excited by slowly modulated microwave carriers. For best
accuracy and efficiency, the different dynamics of electrical and
thermal phenomena arc exploited. The electric circuit is
simulated by a sequence of HB analyses of equal size, driven
by an exact HB analysis loop for the thermal circuit.

INTRODUCTION
The steadily increasing importance of pcrsomd communi-

cation systems is stimulating the need for CAD techniques that
can efficiently simulate nonlinear circuits and subsystems
driven by digitdly modulated RF/microwave carriers. In xddi-
tion, the ability to evaluate the transient behavior of nonlinear
circuits is also of considerable interest in a number of more
traditional microwave engineering problems such as pulsed-RF
operation of power circuits, phase acquisition in PLL’s, oscil-
lator and amplifier tumon, and so forth. From a CAD view-
point, all these applications are spccinl cases of a general simu-
lation problem consisting in the analysis of nonlinear circuits
supporting high-frequency quasi-periodic waveforms modu-
lated by relatively low-frequency (possibly digital) signals.
While a natural approach to this problem would bc time-
domain analysis, harmonic-balance (HB) with time-varying
phasors has been independently proposed by seveml research
groups [1] - [3] as a more efficient alternative. With these
methods, microwave steady-state analysis is decoupled from
envelope analysis, so that the well-known efficiency of HB
techniques can be fully exploited. One important aspect of
circuit operation that has not been taken into account until now
in this class of simulations is the effect of device self-heating.
Under modulated-RF drive, the active device temperatures are
time-dependent, and may exhibit complex waveforms in
relation with the RF regime, the shape of the signal envelopes,
and the device thermal properties. In turn, this may have a
major influence on the circuit performance, especially for
power circuits. Very well-known examples are amplitude and
phase droop in pulsed power amplifiers, but intermodulation as
well may be affected by self-heating, even in simple multitone
operation [4]. Thus for example it can be expected that thermal
effects may give a contribution to the spectral regrowth and the
adjacent-channel interference generated by nonlinear power
amplifiers. In addition, the accurate evaluation of the timc-
dependent dissipated heat is by itself an information of primaly
importance for the design of some kind of communication
equipment, such as portable transceivers. Thus the extension
of ordinary HB with variable phasors [1] - [3] to cover electro-
thermal analysis is certainly worthwhile.

This task is accomplished hereby an efficient frequency-
domain techniclue based on a modified version of the modulat-
ion-oriented harmonic-balance (MHB) method introduced in
[3]. Each active device is described by a nonlinear thcrrna]

equivalent circuit consisting of a resistance and a capacitance,
and the heat sinking mechanism is simulated by a thermal
transmission line [5]. The electrical state variables (SV) of the
microwave circuit are described by truncated Fourier series
with time-dependent phasors. The time-dependent device
temperatures are described by ordinary Fourier expansions.
The unknowns arc determined by simultaneously solving two
coupled nonlinear systcrns generated by the MHB technique
[3] for the microwave circuit, and by the ordinary HB for the
thermal circuit. Good numerical efficiency is achieved making
use of a hierarchical solution algorithm. The ca~abilities of the
ncw simulation tcchniquc are demonstrated by the electrother-
mal analysis of a nonlinear power amplifier driven by an 800

MHz carrier with rc/4-DQPSK modulation.

THE ELECTROTHERMAL ANALYSIS ALGORITHM
Let us assume that the temperature-dependent non] inear

subnctwork consists of a collection of mtdtiport semiconductor
devices which arc thermally isolated from each other, and that
the electrical behavior of a generic device is essentially
determined by one thermal state variable. This variable is
expressed as TA + DT~(t), where T~ is the known ambient

temperature and DTll(t) is the excess temperature. The exten-
sion to the case of thermally coupled devices (or, equivalently,
of devices requiring more than one thermal SV) is possible.
The electric nonlinear subnctwork can be described by the set
of parametric cquatious

V(t) = U [X(t),$[, x~(t), TA+Dr~@)]
(1)

[
i(t)= w x(t),$-, X{l(t),TA + DT1)(t)

1

where v(t), i(t) are vectors of voltages and currents at the
device ports, x(t) is a vector of electrical SV, and xd(t) is a

vector of time-delayed electrical SV, i.e., xdi(t) = xi(t - ‘Ci), ~i

being a time constant. v(t), i(t), x(t) have lhc same size llD,

equal to the total number of device ports. DT1l(t) is the vector
of the device excess lcmpcrahrres, and its size ND equals Lhe
number of devices. ( 1) can easily accommodate advanced
electrothermal models of microwave devices [6] and are thus
sufficient for our present purposes; however, the generalization
of the algorithm to rnorc complex models including higher-
order derivatives is straightforward [3]. The heat flow from
each device active region to the ambient is modeled by a
thcrrnal transmission line (TL) of the kind shown in fig. 1. In
this figure, D is the device node, B is the backplane mctaliza-
tion node, and A is lhc ambient node. Each R-C cell is repre-
sentative of a section of the physical heat sinking structure,
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such as a soldering layer, a carrier, and the like. The TL can be
analyzed by a dynamic electrical analogy based on Lhe corre-
spondence between heat flow (here represented by the symbol
“q”) and electric current, excess temperature and voltage. From
fig. 1 we obtain the thermal equations of a generic device:

dDT~(t)
DT~(t) = DT~(t) + y~ (3~[DT~(t), DT~(t)] —d~ -

- 8~[DT~(t), DTB(t)] q(t)

dDT~(t)
qll(t) = “fD ~ - q(t)

(2)

where y~, t3~ are the device thermal capacitance and thermal
resistance, q(t) is the power dissipated in the device, and
DTB(t) is the backplane temperature. The thcrrnd resistance is
temperature-dependent and can be explicitly formulated by
means of the Kirchhoff transform [5]. The small dependence
on temperature of the specific heat is practically negligible, so
that the thermal capacitance is considered linear. Note that (2)
have the same canonical form as (1), with thermal state vari-
ables DT~(t), DT~(t). The thermal nonlinear subnetwork is ac-

tive, however, since it contains the state-dependent source q(t).
The electrical and thermal linear subnetworks maybe de-

scribed by frequency-domain equations of the form

I(w) + Y(co) V(w) + YF(0)) I?(o) = O (3)

ZT(rD) QB(ro) + DB((I)) = O (4)

In (3) Y(co) is the admittance matrix at the device ports when

all source ports arc short-circuited, YF(ro) is the forward trans-

admittance matrix from the source ports to the device ports,

and l?(w) is the vector of free sinusoidal voltage sources of

angular frequency co ~orcing teims) connected to the source
ports. Source and load resistances are included in the Iincar

subnetwork. In (4) ZT(0)) is the diagonal matrix of the input

thermal impedances of all TLs, and QIJ(0)), DIl(ro) are vectors

of phasors of the spectral components of q“(t), DT~(L), for all

devices at frequency co, ZT(W) is computed from fig. 1 by

conventional linear circuit methods. The linear and nonlinear
subnetwork equations (1) - (4) must be simultaneously solved
(for all nonlinear devices) by the electrothermal analysis.

Let us now assume that the forcing terms arc quasi-
periodic microwave signals slowly modulated in amplitude and
phase by baseband signals, i.e.,

f(t) = ~ F’k(t) exp@2kt)

k

(5)

.,.

where f2k is a generic intermodulation (IM) product of a set of

RF/microwave fundamental frequencies @i, and the complex

modulation laws Tk(t) are slowly varying with tirnc. With the
usual HB notation, k is a vector of integer harmonic numbers.
The state vector x(t) has an expression similar to (5), with
Fk(t) replaced by Xk(t). Since the thermal time constants of
microwave semiconductor devices are normally large with re-
spect to the RF period, the time-dependent device temperatures
will only contain the baseband terms (k = O). W itbout loss of
generality, we shall assume that all the Fk(t), and thus Xk(t),
DT~(t), DTB(t) as well, are periodic or quasi-periodic. This

allows the spectral properties of the modulation laws to be

evaluated by the Discrete Fourier Transfo~m (DFT).
Now let the modulation laws be sampled at a finite number

of uniformly spaced time instants t,, (1 s n < N), that will be

referred to as the modulation-law sampling (MS) instants.
In order to find the electric nonlinear subnetwork response to
x(t), we introduce a qwtsi-stationary approximation. We as-
sume that the time constants of the microwave circuit are so
short, that its electrical regime under modulated-RF drive can
be described as a sequence of RF steady slates [1] - [3], each
associated with the set of values that the modulation laws and
the dcvicc excess temperatures take on at a specific MS instant.
Making usc of (5) we get [3]

dx(t) =
– X[dt ~ 1j~kxk(t) + ‘$# exf)(j~kt)

(6)

x~(t) = ~ exp(-jL2kT) [Xk(t) - T w] exp($2kt)

k

where T is the diagonal matrix of the time delays ~i. The com-

putation of (6) requires the derivatives dXk/dt which can be
evaluated at the MS instant t,, by one-sided multipoint in-

cremental rules of the general form

M
dXk(t) ~

dt x % ‘k(t”.in)
t=tn 111=0

(7)

where the coefficients a,m are explicitly listed in many

mathematical handbooks. The accuracy of the derivatives, and
thus of the MHB analysis, increases with M. However, it has
been found that small values of M (say, Ms 2) are sufficient to
obtain very satisfactory results in most practical cases. By
means of (6), (7), and of the quasi-stationary approximation,
the harmonics of (1) at each MS instant, namely Uk(tn),
Wk(tn), can be computed by a multidimensional DFT as a

function of Xl,(t,.,n) (for all h and 0< m s M) [3].

Under the same assumptions, if S2 is an angular frequency
falling inside the band of the modulation laws, a frequency

change by Cl will produce a very small modification of the

microwave circuit admittance. Thus in the neighborhood of

each Clk the admittance matrices Y(w), YF(w) may be approxi-

mated by truncated Taylor expansions. By combining such
expansions with the linear subnetwork equations and replacing

the harmonics Uk(t,,), Wk(t,,) of(I) for I(w), V(w) in (3), we
obtain a nonlinear system for the SV harmonics at a generic
MS instant tn. The mathetnatical developments are similar to

those reported in [3], and will not be repeated here. An
important difference, however, is that here wc make use of (he
one-sided formula (7) for the derivatives, instead of the two-
sidcd formula used in [3]. Each MS instmt is then coupled to a
finite number of other MS instants that precede it in time. If the
real and imaginary park of the HB errors (for all k) are stacked
into a real electrical error vector E,,, the electrical HB system

for t =(. may then be symbolically stated in the form

E,,[Zn, Zn.l, .... Z,,-2M, { tllcrntal unknowrm} ] = O (8)

where Z,l is the vcclor of real and imaginary parts of the Xk(t,,)
(for a fixed n and all k). The entries of Zn (for all n) represent
the electrical unknowns. The set of all electrical unknowns will
be denoted by Z. Note that the nonlinear operator En[*] is

obviously temperature-dependent, as we] 1, so that the system
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(8) also contains the thermal unknowns. However, the latter
are different in nature from the electrical unknowns, as explain-
ed by the following discussion.

The quasi-stationary assumption leading to (8) cannot be
used in the nonlinear analysis of the thermal circuit. This is due
to the fact that the thermal circuit time constants are rather long,

ranging from several us (for the active devices) to several ms

(for a real heat sink), and thus typically have the same order of
magnitude as the time constants of the modulation laws. For
instance, in the NADC system [7] the RF carrier is modulated

at a rate of 49 kb/s, so that the bit inlcrval is about 20.4 p.s.

Thus the thermal circuit electrical regime is fully dynamic, and
must be analyzed by a rigorous HB approach. Since by as-
sumption the modulation laws are quasi-periodic, they can bc
expressed by multiple Fourier expansions of the form

where the !2,’ are IM products of a set of baseband funda-

mental frequencies ~i’. All time-dependent thermal quantities

may be represented by similar expansions. In particular, for the
N~-vectors of the peak and backplane device excess tempe-

ratures, DT~(t), DTB(t), the s-th harmonics will bc denoted
by D~,, DB,. The vector containing the real and imaginary

parts of all harmonics D~,, D,l,, will be denoted by D. The
entries of D are the thermal unknowns.

At the MS sampling instant t,, (1 S n S N), the power

dissipated in the r-th device (1 S r S ND) is given by

[qr(t.) = Re uoT(QWe(k) + ~ E 1(r)

‘kT(t,)‘k*(t,,) (10)
k#O

where the superscript (r) indicates that the vector products are

only extended to the voltage and current harmonics at the r-th

device ports. A Fourier expansion of the form (9) for q,(t) may
then be computed by the DFT. The formulation of the thcrrnal
HB equations is now straightforward, and follows lhc same
guidelines as for a conventional HB analysis [8]. The real ancl
imaginary parts of the thermal HB errors are slacked into a real
thermal error vector ET(Z, D), so that the eleclrothermdl MI-IB

solving system may be written in the form

{

En[zn, Zn.l, . . . . Zn.2M, D] = O

(l<n <N)
(11)

L Er(Z,D) =0

(11) is a system of Nu = Nn~(2nH + 1)+ 2N~(2n.r + 1) real

equations in as many real unknowns, where nl+, nT are the

numbers of IM products used to describe the microwave
steady-state regime and the time-dependent thermal quantities.

SOLUTION OF THE NONLINEAR SYSTEM
In many practical cases (such as for digitally modulated

carriers) the number of MS instants may be quite large, so that
the number of unknowns may climb up to several tens of
thousands or more [1] - [31. Thus in order to avoid exceed-
ingly large CPU times, a clever solution strategy for the systcm
(11) is needed. It turns out that this system is ideally suited for
the application of the hierarchical technique introduced in [9].

n~ is normally less than N/2, but can often be further reduced if

the fine details of the temperature waveforms are not of specific
interest. In addition, ND < n~. Thus the size of the thermal

subsystem in (11) is much smaller than Nu. Following [9], we

may assign to the thermal subsystem the role of nmster system,
or cquivalcntl y solve the nonlinear system

E~[Z(D), D] = O (12)

where Z(D) is Lhc solution of the electrical subsystem for a
given D. In turn, the electrical subsystem can be efficiently
solved thanks to its very peculiar structure. As a matter of fact,
for a given set of tbcrmal unknowns, (8) can be viewed as a
rcai system of nIj(2nll + I ) equations in as many unknowns

(the entries of Zn), with Z,,.l, .... Zn.2~ playing the role of
parameters. Thus wilh a suitable initialization, the electrical sub-
system can be solved as a sequence of N independent ordinary
HB systems of size nD(2n11 + 1).

In practice, (12) is solved by a Newton iteration starting
from D = O. For a given D tbe device excess temperatures can
be evaluated at all the MS instants. The electrical subsystem
may then be solved stinting from the solutions obtained at the
previous iteration (Z = O at startup). At the first MS inslant tl,

an ordinary HB analysis is carried out. At tbc MS instants t,n
(2< ms 2M) the expressions (7) of the derivatives are suitably
simplified (i.e., by reducing M), so that the colnputation only
requires already available information from the preceding MS
instants. For n > 2M the standard system (8) is sequentially
solved for increasing values of n. At lbc end of this process,
the heat sources are evaluated by (10) (for ail r, n) and Fourier
transformed, which provides the forcing terms of the thermal
HB equations. The thermal HB errors may then be computed.
The Jacobian matrix of(12) is exactly evaluated by algorithms
similar to those discussed in [8], [9]. Since (12) is only mildly
nonlinear, 2-3 iterations with respect to the thermal unknowns
arc usually sufficient to achieve convergence, so that the
overall solution process is numerically efficient.

AN EXAMPLE OF APPLICATION
As an example of application, we consider the electro-

thermal analysis of a power amplifier driven by a digitally
modulated carrier. The carrier frequency is 835 MIIz and the

modulation format is rT/4-DQPSK according to the NADC

standard [7]. The amplifier consists of a simple class-A FET
stage opemtcd at 4 dB gain compression, and the active device
is modeled after [6]. The device is assumed to be mounted in a
microstrip package, whose ground pl anc is soldered to a mclal
heal sink of finite size. Three layers representing the package,
the solder, and the finite heat sink, are thus included in the
thermal TL between the device backplane and the ambient. The
thermal conductivity of GaAs is assumed to be proportional to

T-i 2 [5]. The baseband bit stream is described as a periodic
sequence of 512 bits with a bit rate of 49 kb/s. Figs. 2, 3 show
the input and output normalized power spectra of the modu-
laled carrier, for an input power of +23.25 dBm on the useful
channel. The output spcclrum is shifted by an amount equal to
the amplifier gain for ease of comparison. The spectral re-
growth of tbc output signal duc to IM distortion in the power
amplifier is evident from these figures. The power gain and
power-added efficiency of the amplifier are obviously influ-
enced by the device self-heating. With digital modulation and
+23.25 dBnl inpul power on the useful channel, the gain and
efficiency values with the device al ambient temperature (290

‘K) arc G = 7.4 ctB, TI = 34.4 Y.. On the other hand, when
self-heating is accounted for the gain drops to G = 6. I dB,

with a powcr+rddcd efficiency q = 27.7 Yo. Fig. 4 shows the
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in-phase and quadrature components of the output modulation
laws and the FET temperature waveform T~ + DT~(t) in a 64-

bit slot extracted from the main sequence. The FET thermal

time constant is about 120 ps at 290 ‘K. The analysis makes

use of 4 sampling points per bit and 4 carrier harmonics plus
d.c., so that N = 2048, and the number of electrical unknowns
is 36864. n~ = 512 thermal harmonics are used, so that the

number of thermal unknowns is 2050, and Nu = 38914. The

CPU time is 1136 seconds on an HP 755 workstation.
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Fig. 1- Thermal transmission-line model of the heat flow from

an active device.
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Fig. 2- Input power spectrum.
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Fig. 3- Output power spectrum.
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Fig. 4a -In phase modulation law of the load current.
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Fig. 4b - Quadrature modulation law of the load current.
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Fig. 4C - Peak device temperature.
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